新聞資訊
NEWS INFORMATION增材減材復合神器
隨著材料加工、微納機電、微流控、新型醫(yī)療設備、微電子器件等領域的發(fā)展,對不同材料的精細激光加工的需求越來越多。借助激光加工技術不僅可以對材料進行減材制造,還可以對特定材料進行增材制造。近日,Quantum Design中國公司引進了Femtika公司設計并生產(chǎn)的飛秒激光微納加工綜合系統(tǒng)-Laser Nanofactory,以滿足科研或工業(yè)界對精細激光加工的需求。Laser Nanofactory是一款集增材與減材制造于一體的綜合微納加工系統(tǒng)。Laser Nanofactory與傳統(tǒng)的微納3D打印設備相比不僅可用于光子學聚合物微納結(jié)構(gòu)的加工,還可以用于石英,陶瓷,玻璃和金屬等材料從毫米到微米尺度的精確加工。得益于Femtika國際前列的飛秒激光技術,Laser Nanofactory加工速度可高達50 mm/s,加工精度優(yōu)于100 nm,加工過程中無拼接痕跡。Laser Nanofactory可以提供不同功率的激光,滿足您從工業(yè)生產(chǎn)到科研探索的多方面需求。
Femtika飛秒激光微納加工綜合系統(tǒng)-Laser Nanofactory
精選案例
2.1多光子聚合(Multi-Photon Polymerization)微納加工
光學微結(jié)構(gòu)
左圖為菲涅爾微透鏡,右圖為微棱鏡
生物醫(yī)藥
左圖為微針陣列,右圖為生物用微支架
MEMS/傳感器
左圖為可活動的微鎖鏈,右圖為微型彈簧
2.2激光選擇性刻蝕
微流控加工
左圖為在熔融石英玻璃上制備的微流道,右圖為在玻璃中刻蝕的特斯拉閥
MEMS
左圖為微型間歇齒輪,右圖為特殊3D噴嘴
2.3激光刻蝕
金屬加工
左圖為在金屬上制備直徑為30 μm的微洞,右圖為長度500 μm的二維碼
表面改性
左圖為在金屬表面上制備的疏水微結(jié)構(gòu),右圖為在金屬表面上制備的親水微結(jié)構(gòu)
利用飛秒激光在鈦金屬表面產(chǎn)生不同厚度的氧化層
2.4 綜合加工應用
利用激光刻蝕制備出較大的微流道,再通過多光子聚合技術在流道的特定位置形成微濾網(wǎng)
已有用戶
發(fā)表文章
[1] A. Butkut?, G. Merkininkait?, T. Jurk?as, J. Stan?ikas, T. Baravykas, R. Vargalis, T. Ti?kūnas, J. Bachmann, S. ?akirzanovas, V. Sirutkaitis, and L. Jonu?auskas, “Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant", Materials 2022,15, 2817, (2022).
[2] G. Kontenis, D. Gailevi?ius, N. Jimenez, and K. Staliunas, “Optical Drills by Dynamic High?Order Bessel Beam Mixing", Phys. Rev. Applied 17, 034059, (2022).
[3] D. ?ere?ka, A. ?emaitis, G. Kontenis, G. Nemickas, and L. Jonu?auskas, “On?Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment", Materials 2022,15, 2141, (2022).
[4] A. Butkut?, and L. Jonu?auskas, “3D Manufacturing of Glass Microstructures Using Femtosecond Laser",Micromachines 2021,12, 499, (2021).
[5] D. Andrijec, D. Andriukaitis, R. Vargalis, T. Baravykas, T. Drevinskas, O. Korny?ova, A. Butkut?, V. Ka?konien?, M. Stankevi?ius, H. Gricius, A. Jagelavi?ius, A. Maru?ka, and L. Jonu?auskas, “Hybrid additive subtractive femtosecond 3D manufacturing of nanofilter based microfluidic separator", Applied Physics A (2021).
[6] D. Gonzalez-Hernandez, S. Varapnickas, G. Merkininkait?, A. ?iburys, D. Gailevi?ius, S. ?akirzanovas, S. Juodkazis, and M. Malinauskas,"Laser 3D Printing of Inorganic Free?Form Micro-Optics", Photonics 2021,8, 577, (2021).
[7] D. Andriukaitis, A. Butkut?, T. Baravykas, R. Vargalis, J. Stan?ikas, T. Ti?kūnas, V. Sirutkaitis, and L. Jonu?auskas, “Femtosecond Fabrication of 3D Free-Form Functional Glass Microdevices: Burst-Mode Ablation and Selective Etching Solutions", 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, (2021).
[8] A. Butkut?, T. Baravykas, J. Stan?ikas, T. Ti?kūnas, R. Vargalis, D. Paipulas, V. Sirutkaitis, and L. Janu?auskas, “Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication", Optical Express 23487, Vol. 29, No. 15, 19.07.2021, (2021).
[9] A. Maru?ka, T. Drevinskas, M. Stankevi?ius, K. Bimbirait?-Survilien?, V. Ka?konien?, L. Jonu?auskas, R. Gadonas, S. Nilsson, and O. Korny?ova, “Single-chip based contactless conductivity detection system for multi-channel separations", Anal. Methods, 2021,13,141–146, (2021).
[10] L. Bakhchova, L. Jonu?auskas, D. Andrijec, M. Kurachkina, T. Baravykas, A. Eremin, and U. Steinmann,“Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems", Materials 2020, 13, 3076 (2020).
[11] T. Ti?kūnas, D. Paipulas, and V. Purlys, “Dynamic voxel size tuning for direct laser writing," Opt. Mater. Express 10, 1432-1439 (2020).
[12] T. Ti?kūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization", Appl. Phys. Lett. 116, 031101 (2020).
[13] L. Jonu?auskas, T. Baravykas, D. Andrijec, T. Gadi?auskas, and V. Purlys, “Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand", Sci Rep 9, 17533 (2019).
[14] S. Gawali. D. Gailevi?ius, G. Garre-Werner, V. Purlys, C. Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas, “Photonic crystal spatial filtering in broad aperture diode laser", Appl. Phys. Lett. 115, 141104 (2019).
[15] L. Jonu?auskas, D. Gailevi?ius, S. Rek?tyt?, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing," Opt. Express 27, 15205-15221 (2019).
[16] L. Jonu?auskas, D. Mackevi?iūt?, G. Kontenis and V. Purlys, “Femtosecond lasers: the ultimate tool for high precision 3D manufacturing", Adv. Opt. Technol., 20190012, ISSN (Online) 2192-8584, (2019).
[17] L. Grineviciute, C. Babayigit, D. Gailevicius, E. Bor, M. Turduev, V. Purlys, T. Tolenis, H. Kurt, and K. Staliunas,“Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition", Appl. Surf. Sci., 481, 353-359 (2019).
[18] D. Gailevi?ius, V. Padolskyt?, L. Mikoliūnait?, S. ?akirzanovas, S. Juodkazis, and M. Malinauskas, “Additive manufacturing of 3D glass-ceramics down to nanoscale resolution", Nanoscale Horiz., 4, 647-651 (2019).
[19] E. Yulanto, S. Chatterjee, V. Purlys, and V. Mizeikis, “Imaging of latent three-dimensional exposure patterns created by direct laser writing in photoresists", Appl. Surf. Sci., 479, 822-827 (2019).
[20] L. Jonu?auskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale", J. Opt., 20(05301) (2018).
[21] E. Skliutas, S. Kasetaite, L. Jonu?auskas, J. Ostrauskaite, and M. Malinauskas “Photosensitive naturally derived resins toward optical 3-D printing," Opt. Eng. 57(4), 041412 (2018).
[22] L. Jonu?auskas, S. Rek?tyte, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas,“Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source," Opt. Eng. 56(9), 094108 (2017).
Copyright © 2024QUANTUM量子科學儀器貿(mào)易(北京)有限公司 All Rights Reserved 備案號:京ICP備05075508號-3