技術(shù)文章
TECHNICAL ARTICLES單個細胞別的粘附力測定
單細粘附力的測定直以來都缺乏種能夠在不改變細胞性質(zhì)的同時測量細胞整體粘附力的設(shè)備。現(xiàn)如今FluidFM 技術(shù)的出現(xiàn)改變了這狀況。高精密的流體力探針能夠在感知壓力的同時通過內(nèi)壓而非蛋白結(jié)合的方式在不改變細胞性質(zhì)的同時牢固的抓取細胞,為單細胞粘附力測定提供新的可能。
當(dāng)今,機械生物學(xué)是個新興、迅速發(fā)展的研究域,并著重研究細胞力學(xué)在細胞功能乃至整個生物體水平上的作用,從而揭示細胞受力對組織、器官發(fā)育、生理學(xué)以及疾病的起因和進展中所發(fā)揮的作用。其中在細胞層面上的研究主要集中在研究細胞之間的粘附力和細胞與基質(zhì)之間的相互作用。其中細胞與基質(zhì)的作用往往需要通過細胞表面的整合素受體介導(dǎo)來完成,也是當(dāng)今的研究重點。目前在細胞-基質(zhì)相互作用力的研究中已經(jīng)有諸多方法被建立,其中有諸多測量方法是基于AFM(原子力顯微鏡)的,因為AFM 能夠定量測量細胞-基質(zhì)之間的粘附力,這也使得AFM 成為了測量細胞間作用力的常用設(shè)備。
該類方法主要是用基質(zhì)蛋白包被探針并與細胞靠近發(fā)生作用并固定在懸臂上,之后通過將細胞與基質(zhì)進行接觸從而通過測量作用過程中懸臂的彎曲程度來實現(xiàn)力學(xué)測量。然而這種方法也有其局限性。為了讓細胞能夠與懸臂進行粘連,就必須使用凝集素、鏈霉親和素或細胞外基質(zhì)蛋白進行預(yù)處理。然而這將無可避免的改變細胞表面細胞的功能狀態(tài)和表面整合素分布。另外這種方法僅能讓細胞與基質(zhì)接觸短的時間,這導(dǎo)致了這種方法只能應(yīng)用于早期粘附力的測量。此外受制于材料學(xué)的限制,適合于固定細胞在探針上并不影響細胞的強力材料仍有待開發(fā)。因此使用AFM 測量細胞粘附力的方法仍然需要改進與完善。
而如今Cytosurge 推出的全新的FluidFM 技術(shù)給粘附力測量帶來了新的希望。這種技術(shù)結(jié)合了的原子力顯微鏡探測技術(shù)與微流體控制系統(tǒng)。該技術(shù)能夠直接通過使用中空的原子力探針將細胞通過負壓粘附在探針表面,并不需要激活細胞的任何通路信號。這樣為粘附力的測量帶來了大的勢。方面,這種方法能夠提供遠比蛋白結(jié)合牢固多的粘附力,能夠?qū)⒓毎喂痰墓潭ㄔ谔结樕厦?,因此能夠用于直接從基質(zhì)上分離。而另方面,由于沒有生物處理,這種方法不會改變?nèi)魏渭毎砻娴耐?,從而能夠得到接近細胞原生的?shù)據(jù)。本文就如何使用FluidFM 測定細胞粘附力和近期應(yīng)用案例進行總結(jié)。
FluidFM 技術(shù)如何測定細胞粘附力?
為了闡述這個問題,本文引用Scientific Reports 在2017 年發(fā)表的文獻中的方法進行闡述。*,細胞在基質(zhì)上進行單層培養(yǎng)時,吸附在基質(zhì)表面時主要會產(chǎn)生兩種不同類型的力,種是細胞與基質(zhì)之間的粘附力,另種是細胞與細胞之間的粘附力。因此對于細胞粘附力來說,單個細胞的粘附力就是細胞與基質(zhì)之間的作用力。而單層細胞的細胞粘附力則是細胞之間相互作用力和細胞基質(zhì)與細胞之間作用力之和。如下圖所示:
因此只要同時測定單個細胞粘附力即可得到細胞與基質(zhì)之間的相互作用力,而細胞間的相互作用力則可以通過同時測量單層細胞的細胞粘附力和單個細胞的粘附力做差即可得到,如下公式所示:
Force cell-cell ≌ Force Monolayer – Force Indiv.cell
以上即為粘附力的計算方法,為了能夠測量粘附力Sancho 等使用FluidFM 技術(shù),通過將探針靠近細胞直到探針與細胞接觸,之后開始對探針腔內(nèi)增加負壓從而牢固的吸住細胞。當(dāng)細胞固定后收回探針并記錄這之間的力學(xué)變化,如下圖所示:
從圖中顯示出當(dāng)探針開始靠近細胞后,探針表面開始出現(xiàn)壓力變化,如上圖中的藍色區(qū)域所示。當(dāng)出現(xiàn)這種變化后就停止下降探針并開始施加負壓。這時候由于腔內(nèi)負壓,探針和細胞之間的結(jié)合變得緊密,導(dǎo)致探針被細胞向下拉動,從而產(chǎn)生了上邊右圖白色區(qū)域的力學(xué)變化。隨后隨著探針上升,細胞給以探針的拉力隨之增高,并逐漸達到臨界,使得細胞脫離基質(zhì)。這過程的大值即為細胞粘附力。
之后作者考察了兩種性質(zhì)截然不同的細胞的粘附力。種是L929 無細胞間作用的細胞,另種是HUAEC 具有細胞間的相互作用的細胞,結(jié)果如下圖所示:
結(jié)果也證實了粘附力測定公式。具有細胞間作用的HUAEC 在單個細胞和單層細胞之間的粘附力存在差異,而無細胞間相互作用的L929 細胞則沒有差異。因此FluidFM 技術(shù)能夠很好地幫助研究者研究單細胞粘附力的性質(zhì)。
FluidFM 測定細胞粘附力的應(yīng)用
隨著時間推移,越來越多的學(xué)者開始使用FluidFM 技術(shù)進行測定細胞粘附力。以下就近五年的具有代表性的應(yīng)用進行總結(jié)。
Cohen 等使用FluidFM 技術(shù)對MCF7-MCF10A、MCF7-HS5 的細胞粘附力進行了測定,并與以往的文獻進行對比,發(fā)現(xiàn)其數(shù)據(jù)與Hossein 等測定的結(jié)果相符。如下圖所示:
使用FluidFM 技術(shù)對MCF7-MCF10A、MCF7-HS5 細胞粘附力進行測定 a. 使用FluidFM 測定細胞粘附力全過程;b. MCF7-HS5 的細胞粘附力測試結(jié)果;c. MCF7-MCF10A 的細胞粘附力測試結(jié)果。
Jaatinen 等通過使用FluidFM 技術(shù)研究外加電流對C2C12 小鼠成肌細胞粘附力的影響中發(fā)現(xiàn)隨著外周電流的增加,細胞形態(tài)發(fā)生改變,與基質(zhì)接觸面積降低。當(dāng)電流劑量高過11As/m2后細胞形態(tài)急劇改變,粘附力等參數(shù)發(fā)生明顯變化,甚至死亡。如下圖所示:
FluidFM 測定C2C12 細胞粘附力 a.使用FluidFM 測定粘附力顯微鏡圖;b.施加12.3As/m2電流和空白對照組的粘附力譜線;c.粘附力與電流之間的量效關(guān)系圖。
Sankaran 等使用FluidFM 來研究共價和非共價的表面整合素受體對細胞粘附力的影響。通過測定發(fā)現(xiàn)兩者均可有效增加細胞的粘附能力,并且效果近似。
使用FluidFM 技術(shù)測定共價鍵與非共價鍵之間的整合素受體RGD 之間的區(qū)別 a. FluidFM 測定粘附力的示意圖; b. 細胞粘附力測定前后顯微鏡示意圖; c.測定粘附力時候的力學(xué)曲線圖;d. 大粘附力圖。
Sancho 等通過FluidFM 技術(shù)使用了種非常有趣的測量方法來測量MSX1 過表達對細胞骨架的影響,他們將10μm 的小膠球固定在探針上,之后使用探針去壓細胞直到探針壓力達到2 nN,通過壓痕曲線來分析細胞骨架變化。通過對比發(fā)現(xiàn)過量表達MSX1 細胞的硬度顯著比普通細胞高。如下圖所示:
使用FluidFM 技術(shù)測定HUAEC 中MSX1 過表達對細胞骨架的影響。a. HUAEC 細胞的免疫熒光染色phalloidin(上)、vimentin(下)(綠色)Hoechst(藍色);b. HUAEC 細胞的免疫熒光染色phalloidin(紅色)、vinculin(綠色)TOPRO-3(藍色);c. 每個克隆中vinculin 陽性面積;d. 使用FluidFM 技術(shù)壓細胞的示意圖;e. 吸取10μm 珠子;f. 空白細胞下壓時的力學(xué)譜線;g. MSX 過表達細胞下壓時的力學(xué)譜線,更深的凹陷和平滑的斜率表示較低的剛度; h.用膠體壓痕法測定細胞剛度的測量結(jié)果。
總結(jié)
細胞粘附力測定在細胞生命科學(xué)研究中起著至關(guān)重要的作用,然而傳統(tǒng)手段中有著各種各樣的局限性,這主要原因是缺乏種有效能夠抓取細胞并進行力學(xué)測定的手段?,F(xiàn)如今FluidFM 技術(shù)在細胞粘附力測定中的使用,使得研究者們有了種能夠有效、低損的方式抓取細胞,并配合著原子力顯微鏡的測量的性,從而能夠真正意義上的做到、無損、快速的測量單細胞粘附力,幫助研究者尋找細胞粘附力與細胞生命發(fā)展、腫瘤細胞轉(zhuǎn)移之間的關(guān)系。
參考文獻
1. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21–33 (2009).
2. Helenius, J., Heisenberg, C. P., Gaub, H. E. & Muller, D. J. Single-cell force spectroscopy. J Cell Sci 121, 1785–1791 (2008).
3. Wojcikiewicz, E. P., Zhang, X., Chen, A. & Moy, V. T. Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion. J Cell Sci 116, 2531–2539 (2003).
4. Friedrichs, J., Helenius, J. & Muller, D. J. Stimulated single-cell force spectroscopy to quantify cell adhesion receptor crosstalk.Proteomics 10, 1455–1462 (2010).
5. Friedrichs, J. et al. A practical guide to quantify cell adhesion using single-cell force spectroscopy. Methods 60, 169–178 (2013).
6. Taubenberger, A. V., Hutmacher, D. W. & Muller, D. J. Single-cell force spectroscopy, an emerging tool to quantify cell adhesion to biomaterials. Tissue Eng Part B Rev 20, 40–55 (2014).
7. Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett 9, 2501–2507 (2009).
8. Potthoff, E. et al. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells. PLoS One 7, e52712 (2012).
9. Potthoff, E. et al. Toward a rational design of surface textures promoting endothelialization. Nano Lett 14, 1069–1079 (2014).
10. Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol 32, 381–388 (2014).
11. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science 141, 401–408 (1963).
12. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28, 113–127 (2009). Scientific Reports | 7:46152 | DOI: 10.1038/srep46152
13. Ryan, P. L., Foty, R. A., Kohn, J. & Steinberg, M. S. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci USA 98, 4323–4327 (2001).
14. Shinozawa, T., Yoshikawa, H. Y. & Takebe, T. Reverse engineering liver buds through self-driven condensation and organization towards medical application. Dev Biol 420, 221–229 (2016).
15. Eisenberg, L. M. & Markwald, R. R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77, 1–6 (1995).
16. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67, 10123–10128 (2007).
17. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16, 1400–1406 (2010).
18. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13, 952–961 (2007).
19. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat Methods 13, 415–423 (2016).
20. Kashef, J. & Franz, C. M. Quantitative methods for analyzing cell-cell adhesion in development. Dev Biol 401, 165–174 (2015).
21. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat Mater 10, 469–475 (2011).
22. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17, 276–287(2015).
23. Kashef, J. & Franz, C. M. Quantitative methods for analyzing cell-cell adhesion in development. Developmental Biology 401, 165–174(2015).
24. Puech, P. H., Poole, K., Knebel, D. & Muller, D. J. A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106, 637–644 (2006).
25. Winklbauer, R. Cell adhesion strength from cortical tension - an integration of concepts. J Cell Sci 128, 3687–3693 (2015).
26. Huang, R. Y., Guilford, P. & Thiery, J. P. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 125, 4417–4422 (2012).
27. Weder, G. et al. The quantification of single cell adhesion on functionalized surfaces for cell sheet engineering. Biomaterials 31, 6436–6443 (2010).
28. Lagendijk, A. K., Yap, A. S. & Hogan, B. M. Endothelial cell-cell adhesion during zebrafish vascular development. Cell Adh Migr 8,136–145 (2014).
29. Weber, G. F., Bjerke, M. A. & DeSimone, D. W. Integrins and cadherins join forces to form adhesive networks. Journal of Cell Science124, 1183–1193 (2011).
30. Owen, G. R., Meredith, D. O., ap Gwynn, I. & Richards, R. G. Focal adhesion quantification - a new assay of material biocompatibility? Review. Eur Cell Mater 9, 85–96, discussion 85–96 (2005).
31. Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492–496 (2013).
32. Vandersmissen, I. et al. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. J Cell Biol 210,1239–1256 (2015).
33. Chen, Y. H., Ishii, M., Sucov, H. M. & Maxson, R. E. Jr. Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Dev Biol 8, 75 (2008).
34. Ma, L., Lu, M. F., Schwartz, R. J. & Martin, J. F. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601–5611 (2005).
35. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429–1437 (2009).
36. Meng, F. & Wu, G. The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 31, 455–467 (2012).
37. Chamberlain, G., Fox, J., Ashton, B. & Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739–2749 (2007).
38. Medici, D. & Kalluri, R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22, 379–384 (2012).
39. Potenta, S., Zeisberg, E. & Kalluri, R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99, 1375–1379 (2008).
40. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178–196(2014).
41. Zebda, N., Dubrovskyi, O. & Birukov, K. G. Focal Adhesion Kinase Regulation of Mechanotransduction and its Impact on Endothelial Cell Functions. Microvascular Research 83, 71–81 (2012).
42. Briscoe, B. J., Sebastian, K. S. & Adams, M. J. The Effect of Indenter Geometry on the Elastic Response to Indentation. Journal of Physics D-Applied Physics 27, 1156–1162 (1994).
43. Mahaffy, R. E., Park, S., Gerde, E., Kas, J. & Shih, C. K. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophysical J 86, 1777–1793 (2004).
44. Li, Q. S., Lee, G. Y., Ong, C. N. & Lim, C. T. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374, 609–613 (2008).
45. Nelson, C. M., Pirone, D. M., Tan, J. L. & Chen, C. S. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions stimulating RhoA. Molecular Biology of the Cell 15, 2943–2953 (2004).
46. Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28, 15–33 (2009).
47. Savagner, P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23, 912–923 (2001).
48. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 15, 178–196 (2014).
49. Thoelking, G. et al. Nanotopography follows force in TGF-beta1 stimulated epithelium. Nanotechnology 21, 265102 (2010).
50. Buckley, S. T., Medina, C., Davies, A. M. & Ehrhardt, C. Cytoskeletal re-arrangement in TGF-beta1-induced alveolar epithelialmesenchymal transition studied by atomic force microscopy and high-content analysis. Nanomedicine 8, 355–364 (2012).
51. Osborne, L. D. et al. TGF-beta regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion.Molecular Biology of the Cell 25, 3528–3540 (2014).
52. Gasparics, A., Rosivall, L., Krizbai, I. A. & Sebe, A. When the endothelium scores an own goal: endothelial cells actively augment metastatic extravasation through endothelial-mesenchymal transition. Am J Physiol Heart Circ Physiol 310, H1055–1063 (2016).
53. Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the Calibration of Atomic-Force Microscope Cantilevers. Review ofScientific Instruments 66, 3789–3798 (1995).
54. Dorig, P. et al. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys J 105,463–472 (2013).
55. Radmacher, M., Fritz, M. & Hansma, P. K. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69, 264–270 (1995).
56. Darling, E. M., Topel, M., Zauscher, S., Vail, T. P. & Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41, 454–464 (2008).
57. Guo, S. L. & Akhremitchev, B. B. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7, 1630–1636 (2006).
58. Siamantouras, E., Hills, C. E., Younis, M. Y. G., Squires, P. E. & Liu, K.-K. Quantitative investigation of calcimimetic R568 on beta cell adhesion and mechanics using AFM single-cell force spectroscopy. Febs Letters 588, 1178–1183 (2014).
Copyright © 2024QUANTUM量子科學(xué)儀器貿(mào)易(北京)有限公司 All Rights Reserved 備案號:京ICP備05075508號-3
技術(shù)支持:化工儀器網(wǎng)
管理登錄 sitemap.xml